Endocrine and cardiac paracrine actions of insulin-like growth factor-I (IGF-I) during thyroid dysfunction in the rat: is IGF-I implicated in the mechanism of heart weight/body weight change during abnormal thyroid function?

in Journal of Molecular Endocrinology
View More View Less
Restricted access

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

ABSTRACT

Thyroid hormones are essential for the normal growth and development of many tissues. In the rat, hypothyroidism is associated with growth impairment, and hyperthyroidism with the development of a hypercatabolic state and skeletal muscle wasting but, paradoxically, cardiac hypertrophy. The mechanism by which thyroid hormone produces cardiac hypertrophy and myosin isoenzyme changes remains unclear. The role of IGF-I, an anabolic hormone with both paracrine and endocrine actions, in producing cardiac hypertrophy was investigated during this study in hyperthyroid, hypothyroid and control rats. A treated hypothyroid group was also included in order to assess the effect of acute normalization of thyroid function.

Body weight was significantly lower in the hyperthyroid (mean±s.e.m.; 535·5±24·9 g, P<0·05), hypothyroid (245·3±9·8 g, P<0·001) and treated hypothyroid (265·3±9·8 g, P<0·001) animals when compared with controls (618·5±28·6 g). Heart weight/body weight ratios were, however, significantly increased in the hyperthyroid (2·74 ± 0·11×10−3, P<0·01) and treated hypothyroid (2·87±0·07 ×10−3, P<0·001) animals when compared with controls (2·26±0·03 × 10−3). Serum IGF-I concentrations were similar in the control and hyperthyroid rats (0·91±0·07 vs 0·78±0·04 U/ml, P=0·26), but bioactivity was reduced by 70% in hyperthyroid serum, suggesting a circulating inhibitor of IGF. Serum IGF-I levels (0·12±0·03 U/ml, P<0·001) and bioactivity (0·12±0·04 U/ml, P<0·001) were significantly lower in the hypothyroid group. Liver IGF-I mRNA levels were not statistically different in the control and hyperthyroid animals, but were significantly reduced in the hypothyroid animals (P<0·05 vs control). Heart IGF-I mRNA levels were similar in the control and hypothyroid rats, but were significantly increased in the hyperthyroid and treated hypothyroid animals (increased by 32% in hyperthyroidism, P<0·05; increased by 57% in treated hypothyroidism, P<0·01). Cardiac IGF-I was significantly elevated in hyperthyroidism (0·16±0·01 U/mg heart tissue, P<0·01), was low in hypothyroidism (0·08±0·01 U/mg, P<0·01) and was normalized in the treated hypothyroid group (0·11 ± 0·01 U/mg vs control, 0·13±0·01 U/mg).

Low body mass during both hypothyroidism and hyperthyroidism is therefore associated with reduced systemic IGF bioactivity. In hypothyroidism there is a primary defect in the endocrine function of IGF-I, while in hyperthyroidism serum IGF bioactivity is reduced in the presence of normal endocrine production of this anabolic hormone. In contrast, the paracrine actions of IGF-I are increased in the heart during hyperthyroidism, and this hormone appears to play a part in the development of hyperthyroid cardiac hypertrophy.

 

Society for Endocrinology logo

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 21 21 5
Full Text Views 0 0 0
PDF Downloads 0 0 0